le lab quantique

What we've achieved since Oct. 2018

- 3 Meetups
- 2 hackathons
- 1 major conference with BPI France (QCB) 1 event at Station F

A Meetup community > 500 members

Next?

Projet submitted to the « Mission Fortezza » towards a National Plan on Quantum Technologies:

L'ambition du Lab Quantique est de placer la France sur la carte mondiale de sites d'excellence quantique en développant les liens étroits qui unissent acteurs académiques, industriels et investisseurs, en interaction avec le système d'innovation français

Accélération

Nouveau mode de coordination

Under the High Patronage of Mr Emmanuel MACRON President of the French Republic

THE FIRST GLOBAL GATHERING OF THE **DEEP TECH ECOSYSTEM**

DEEP TECH WEEK

Quantum Cyber-Security : Impact And Challenges

March, 11th 2020 - 9h - 12h30

Bpifrance le HUB, 6-8 Bd Haussmann 75 009 Paris

<QCDB> QUANTUM COMPUTING BUSINESS

Guest star: John Martinis

Quantum Algorithms

Leonard Wossnig Chief Executive Officer

rahko

Why quantum?

Outlook for quantum algorithms in 2020

High level overview:

- (Quantum) algorithms are split in two different types:
 - Heuristics (variational optimizers like VQE, etc., QAOA, Annealing)
 - Algorithms with provable guarantees (QLSA, PE, Grover's, etc.)
- Different guarantees, requirements, and timelines apply
- Senchmarking versus proof: Yet, we neglect the overheads!

rahko

Content of the talk

- **1. Quantum computers today**
- 2. Quantum algorithms with provable guarantees
- **3. Quantum Heuristics**
- **4.** Conclusion
- 5. Rahko's approach

Quantum computers today

We are in the 'NISQ' era of quantum computing. This means:

1

3

5

- Noisy intermediate scale quantum computers
- Only a few quantum computers are available with a few qubits (currently ~53) each
- Qubits are hard to control, and no error correction possible
- Can only run Heuristic algorithms
- Can only use error mitigation

Algorithms with provable guarantees

Applications/Types:

- Algorithms based on Phase Estimation and Hamiltonian Simulation, for example linear systems, recommendation systems, SDPs, or chemistry simulations
- Algorithms based on Grover's (AA/AE)
- Algorithms for integer factorization, i.e., Shor's

Pros:

- Typically polynomial speedups and in certain cases up to exponential ones (Chem, Encrypt.)
- Inspired new classical algorithms

Cons:

Quantum Heuristics

Applications/Types:

- Simulation of chemistry and approximation of quantum states via VQE
- ✓ Machine learning, e.g. QGANs
- ✓ Optimization with e.g. QAOA
- ✓ Factoring and numerical (algebraic) operations with variational algorithms

Pros:

- ✓ Promising first applications for some areas, such as quantum chemistry
- ✓ Algorithms can be run on current devices

Cons:

- ✓ No theoretical guarantees possible, and unclear whether there is an advantage
- Scaling in particular is not entirely understood and larger-than-NISQ number of qubits likely required to be classically intractable (e.g. in optimization)

rahko

However, lots of interesting results!

Benedetti et al, New Journal of Physics 2018

0-2-2-4-6-80 1 2 3 4energy evaluations $\times 10^4$

Ostaszewski et al, 2019

1

2

rahko

Conclusions

The good:

3

4

5

- Up to exponential advantages in the long term for chemistry applications
- ✓ Other advantages for ML, Optimisation, etc. possible
- ✓ Near term advantage possible
- Quantum inspired methods already useful today and used in industry

NISQ needs more work:

- Novel methods comparably to classical ones need to be developed in chemistry
- Better strategies to mitigate device errors necessary
- Better empirical understanding needed, e.g., scaling analysis etc.

Rahko's approach

We offer:

3

4

5

- ✓ QiML SaaS or on-premise software for fast chemistry simulation, reducing costs by up to 50%, e.g., for high-throughput screening
- Develop proof of concepts and long-term relationships with customers for NISQ and FECQ computation
- Education of customers about applications in chemistry, materials, and pharmaceuticals

rahko

AWS announced their partner program this month. Rahko is one of the six partners and the only European one. We work today with our customers to reduce their costs.

1

2

3

5

Bhko

For more information - reach out to info@rahko.ai or see www.rahko.ai.

We are partnering with customers to solve their problems using quantum machine learning

CRYPTONEXT SECURITY

We protect your data against the quantum computer

Ludovic Perret ludovic.perret@cryptonext-security.com

Web site: <u>www.cryptonext-security.com</u>

DEEP-TECH FOUNDERS

CTO Jean-Charles Faugère, PhD, HDR, DR INRIA, Team leader Cray & Atos Prizes 150 publications CEO Ludovic Perret, PhD,HDR Atos prize 60 publications

COO Frédéric de Portzamparc, PhD,

Formerly Strategic Marketing with tech start-up & Senior Security Consultant at Thales (Gemalto)

(External) R. P. Straub Business strategy Former Head of market development (ID Quantique) R&D Team: 5 phd+internsphips

CryptoNext Security, France | Confidential

AGENDA

AGENDA

- Security Challenge
- Standardization Challenge
- **Deployment Challenge**

Andrew Yang 🔍 🤣 @AndrewYang

Google achieving quantum computing is a huge deal. It means, among many other things, that no code is uncrackable.

Google reportedly attains 'quantum supremacy' Its quantum computer can solve tasks that are otherwise unsolvable, a report says. S cnet.com

SECURITY CHALLENGE

QUANTUM COMPUTERS ARE COMING FAST

- First versions commercially available today
- Exponential power increase since 1998

IBM Helps Researchers Explore the Impossible With New IBM Q System One

ATOS ANNOUNCES WORLD FIRST IN QUANTUM COMPUTING

Atos Quantum Learning Machine can now simulate real Qubits.

Quantum Learning Machine

Hello quantum world! Google publishes landmark quantum supremacy claim

THE QUANTUM THREAT

Factoring N = pq in $O(poly(\log N))$

Exhaustive search in $O(2^{n/2})$

Computer	Time to break current standard (RSA-1024)
Classical	~ 400 years
Quantum	< 1.2 h

C. Gidney and M. Eker. "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits.", 2019.

Variational Quantum Factoring (40 Bit, 2019) al

CONSEQUENCES OF QUANTUM THREAT

- Sensitive data exposed
 - VPN links no more secure
- End of e-commerce
 - no more trust for on-line transactions
- Identity theft
 - Cryptocurrencies stolen
 - financial transactions
- Unauthorized remote access control
 - Planes, satellites, missiles, etc

And Martin Contract

and the second second second

DATA ARE ALREADY AT RISK TODAY

Harvest data to decrypt it once a quantum computer will be available.

Kazakhstan government is now intercepting all HTTPS traffic

STANDARDIZATION CHALLENGE

RISK PERCEIVED AS MAJOR SINCE 2016

"Quantum risk is now simply too high and can no longer be ignored",

US National Institute of Standards and Technology, 2016

"For use cases requiring a long-lived protection of the information (\geq 20 years), it is advised to start taking the quantum threat into account." "Enhance the crypto agility of existing products with quantum-safe cryptography, in order to facilitate the medium term transition."

ANSSI, 2018

« Plan National Quantique », leaded by P. Forteza (French gouvernement)

New QUANTUM-SAFE STANDARDS ARE IN DEFINITION

- "Transition of US IT government infrastructure to a post-quantum cryptography will be completed by **2024**".
- M. Scholl, NIST, 2017

- Selection of cryptographic standards: NIST post-quantum competition
 - Several cryptographic functions standardized in 2022
 - Key-exchange and signature

China: a concurrent process, ending end 2019

CryptoNext Security, France | Confidential

PUBLIC-KEY CRYPTOGRAPHY : THE CORE ISSUE

- Current public-key cryptographic standards are based on mathematical problems that are easy for a quantum computer
- New harder quantum-safe mathematical problems are currently evaluated by standardization bodies (NIST, ETSI, ISO,)
- Example : Multivariate crypto hard problem solving a system of non-linear equations

```
\begin{cases} x_1x_4 + x_1x_5 + x_2x_3 + x_2x_4 + x_3x_4 + x_4 + x_5 + 1 = 0\\ x_1x_3 + x_1x_5 + x_2x_4 + x_3x_4 + x_3x_5 + x_2 + x_5 + 1 = 0\\ x_1x_3 + x_1x_4 + x_1x_5 + x_2x_5 + x_3 + x_4 = 0\\ x_1x_3 + x_1x_5 + x_2x_3 + x_2x_4 + x_2x_5 + x_3x_5 + x_4x_5 + x_1 + x_5 + 1 = 0\\ x_1x_2 + x_1x_4 + x_1x_5 + x_2x_3 + x_2x_5 + x_3x_4 + x_4x_5 + x_1 = 0 \end{cases}
```

CryptoNext Security, France | Confidential

A GLOBAL EXPERTISE IS REQUIRED

- There is no ideal candidate for a drop-in replacement.
- Several standards will likely be defined in function of the application.
- Optimization is key for the deployment of upcoming quantum-safe standards into current security protocols.
- This requires a high-level expertise.

High level comparison for signatures schemes submitted to the NIST competition.

DEPLOYMENT CHALLENGE

CRYPTONEXT: SOFTWARE THAT ELIMINATES THE QUANTUM THREAT

PRODUCTS

Cryptographic library (MVP)

Technological core of CryptoNext Security Easy integration into security product/services (multiple vercicals) Optimized : Efficient + available for multiple architectures (from PC \rightarrow IOT) On-going IP on secure implementations

Quantum-Safe VPN (2021)

- Security product build on top of the library
- Protect communication for the long term
- To be certified by a national security security agency (ANSSI, France)

CONSULTING/STUDY

POC/POV

LICENSE

CryptoNext Security, France | Confidential

REAL-LIFE DEPLOYMENT OF CRYPTONEXT SOFTWARE IN 2016

• Successful MVP of a smartphone quantum-safe messaging application for French Special Forces

DEMONSTRATION

DEMONSTRATION

https://cryptonext-security.com/images/demo.mp4

THE FUTURE OF SECURE COMMUNICATIONS

Winner 2018

UK's Most Innovative Small Cyber Security Company KETS is the first company with an on-chip quantum encryption solution.

DEPLOYMENT OF CRYPTONEXT SOFTWARE IN 2020 (Q1)

DEEP TECH WEEK

Quantum Cyber-Security : Impact And Challenges

March, 11th 2020 - 9h - 12h30

Ø Bpifrance le HUB, 6-8 Bd Haussmann 75 009 Paris

CryptoNext Security, France | Confidential

THEY SUPPORT US

Inría

CryptoNext is a **spin-off** from INRIA Paris and Sorbonne University incorporated in June 2019.

Incubated by Agoranov

Project **selected** by WILCO (2019, Digital accelerator) and Cyber@StationF (cybersecurity accelerator)

Member of the « Lab Quantique »

Hello Tomorrow Deep Tech Pioneers 2020 (5,000 applications from 128 countries) and Future 40 of Station F

le

LUTECH

CYBER@

STATION F

Agoranov

quantique

ILCO

CONTACT-US !

Iudovic.perret@cryptonext-security.com Jean-Charles.Faugere@cryptonext-security.com Frederic.de.Portzamparc@cryptonext-security.com

Web site: www.cryptonext-security.com

Is Quantum Supremacy changing everything? a « random » view from a « photon » guy

Sylvain Gigan

Le Lab Quantique Meet'up Dec 17, 2019

 Laboratoire Kastler Brossel

 Physique quantique et applications

 Sylvain.gigan@lkb.ens.fr

sylvain@lighton.io

Pls:

Prof. Sylvain GIGAN Dr. Hilton BARBOSA DE AGUIAR (JRC)

Postdocs

Dr. Mushegh RAFAYELYAN Dr. Pauline BOUCHER Dr. Bernhard RAUER Dr. Michal DABROWSKI Dr. Claudio MORETTI

PhD Students

Louisiane DEVAUD Antoine BONIFACE Jonathan DONG Tom SPERBER Julien GUILBERT Saroch LEEDUMRONGWATTHANAKUN

Our Goal : <u>Understand</u> and <u>exploit</u> the complexity of light propagation in complex media

Laboratoire Kastler Brossel

Physique quantique et applications

Alumni

PhDs: S.Popoff (CNRS) D.Andreoli P.Bondareff T.Chaigne (CNRS) H.Defienne M. Mounaix B. Blochet

Postdocs:

D.Martina G. Volpe (UCL) J.Bertolotti (U.Exeter) O.Katz (HUJI) R. Savo (ETH) T. Juffman (U. Vienna) I Gusachenko (cailabs)

Main national and International Collaborations

L. Bourdieu (IBENS) F..Krzakala (LPENS) M. Fink, P. Sebbah S. Bidault, S. Grésillon R. Carminati, R. Pierrat (ESPCI ParisTech) F. Soldevila, E. Tajahuerce, J. Lancis (Castellon) E. Bossy (UJF Grenoble) M. Paternostro (U. Belfast) R. Di Leonardo (U. Roma) R.Piestun (U. Colorado, Boulder) O. Muskens (Southamton) S. Rotter (TU Wien) S.Brasselet (Institut Fresnel)

Scattering

Ballistic Light

Multiple Scattering

Single scattering

Controlling light propagation in complex media

LKB

Transmission matrix of a complex mediim

Propagation = perfect (random) mixing of information

Idea: borrow from Computer Science to <u>take advantage</u> of disorder

A counter-intuitive lesson from signal processing and information theory

Randomness can be optimal to analyze information

multiplication by a complex <u>i.i.d. random</u> matrix

Light

We bring Light to Al

LightOn is a technology company developing novel optics-based computing hardware.

UGHTON CLOUD

Why is it interesting ?

&

EXTRA-LARGE

SUPER-FAST

H of size higher than 10⁶ x 10⁶ (TBs of memory)

kHz operation →10³ such multiplies / s

Equivalent 10¹⁵ operations / s : You would need a *Peta-scale* computer to do the same !

SCALABILITY?

END

IOORE'S

https://www.youtube.com/watch?v=Ak7HPuuJ1Ow

'Tsunami of data' could consume one fifth of global electricity by 2025

A strong common message : there is an alternative to Silicon

- Different applications There is no silver bullet!
- Same goal

What about Q. Supremacy?

« The world is rapidly running out of computing capacity »

Satya Nadella, CEO Microsoft, Jan'18

Can you do more than classical computing with a complex medium ?

... actually YES

Laboratoire Kastler Brossel Physique quantique et applications

Photons for quantum information

Bits of information can be encoded on optical fields

Classical bit Quantum bit

Single Photons

LKB

Polarization to path encoding

Light

Photonic quantum information processing

Several processing tasks on the same platform

LKB

Photonic quantum information processing

LKB

Light

Cascade of 2 x 2 MZ interferometers

Integrated photonic quantum information processing

LKB

Light ** n

Complexity of Quantum Interference

Light

LKB

20 single photons fed into 60-mode interferometer

H.Wang, et al., Arxiv:1910.09930 (to appear in PRL)

Boson

S. Aaronson and A. Arkhipov, STOC'11 (2011) J. B. Spring, *et al.*, *Science* **339**, 798 (2013)

Programmable linear circuit with a multimode fiber

Light

The goal!

LKB

$$\begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \\ \hat{b}_3 \\ \vdots \\ \hat{b}_k \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} & L_{13} & \dots & L_{1m} \\ L_{21} & L_{22} & L_{23} & & & \\ L_{31} & L_{32} & L_{33} & & & \\ \vdots & & \ddots & & \\ L_{k1} & & & & L_{km} \end{bmatrix} \times \begin{bmatrix} \hat{a}_1 \\ \hat{a}_2 \\ \hat{a}_3 \\ \vdots \\ \hat{a}_m \end{bmatrix}$$

Complex mixing within a Multimode Fiber (MMF)

LKB

Output Input MMF **Transmission Matrix** Highly complex mixing (spatial & polarization) Scalable number of modes (100s) Low loss (unitary)

Ploschner, et al., Nat. Phot. **9**, 529 (2015) Flaes, et al., PRL **120**, 233901 (2018)

Light

Programmability with Wavefront Shaping

Light

LKB

We can implement any 2x4 transform for 2 photons 2 spatial modes x 2 polarizations

Some examples of circuits

Leedumrongwatthanakun S., et al. Nature Photonics (2019)

A scalable platform

LKB

What about Google AI Quantum ?

John Martinis's talk @Caltech

LKB

Thanks to my coworkers and collaborators

Thank you for your attention !

Mail : <u>sylvain.gigan@lkb.ens.fr</u> Webpage: <u>www.lkb.ens.fr/gigan</u>

If you are interested in the field :

REVIEWS OF MODERN PHYSICS

Recent Accepted Authors Referees Search Press About m

Light fields in complex media: Mesoscopic scattering meets wave control

Stefan Rotter and Sylvain Gigan Rev. Mod. Phys. 89, 015005 – Published 2 March 2017

REVIEWS of

IODERN PHYSICS

Stefan Rotter (TU Wien)